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Abstract. In this paper we give a derivation for the allometric scaling relation between the
metabolic rate and the mass of animals and plants. We show that the characteristic scaling
exponent of 3/4 occurring in this relation is a result of the distribution of sources and sinks
within the living organism. We further introduce a principle of least mass and discuss the
kind of flows that arise from it.

1. Introduction

In 1947 M. Kleiber [5](see also [8]) found a remarkable relationship between the
metabolic rate B and the mass M of animals or plants. The data showed that these
two quantities are related by an allometric scaling law of the form

B = B0M
γ , (1)

where the scaling exponent γ is to a very good approximation given by 3/4 and B0
is some constant (see figure 1). We will refer to it as Kleiber’s law.

Since this law has been found it has been a challenge to explain the scaling
exponent 3/4 which is of the curious form D/(D + 1), where D is the dimension
of space. The first successful attempt was made by T. A. McMahon [7] who derived
the law from his principle of elastic similarity. The following attempts concentrated
on special properties of the transportation networks inside animals or plants that are
responsible for distributing blood or sap respectively to the cells of the organism
[12][1]. We will show that less detailed assumptions about the system have to be
made in order to arrive at the scaling law.

In [3] it has been shown that the properties of the transportation network are not
decisive for the characteristic exponent ofD/(D+1). It is rather the distribution of
sinks and sources in a living animal or plant that is responsible for the occurrence
of this particular scaling exponent. The fact that animals and plants are what we
call constant source systems is what gives the characteristic scaling exponent. We
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Fig. 1. A double logarithmic plot of the metabolic rate vs. the mass for an assortment of
animals. The straight line shows a scaling exponent of 3/4. The data for the plot is taken
from [5].

will give a precise definition of a constant source system and will show that the
scaling law follows.

After Kleiber’s discovery allometric scaling laws were found in other systems
as well. One example is the drainage basin of a river. In [1] it is shown that the mass
of the river and the area of the drainage basin follow a scaling law with an exponent
of 2/3. An example of a one-dimensional system that exhibits scaling is given in
[3] where the flow through a tube is investigated. It is found that the amount of
water in the tube and its length are related by a scaling law with exponent 1/2. Our
derivation of the scaling law applies to all these systems.

The distribution of sinks and sources in an organism does not in general fix the
flow of blood or sap uniquely. One may thus ask for the conditions that unique-
ly determine the flow. It seems reasonable to require here that the mass of the
transportation network is as low as it can be while still providing the organism
with the required nutrients. We will discuss the kind of flow that follows from this
requirement.

The paper is thus organized as follows. In the first section we introduce constant
source systems and give a mathematically precise definition of them. In the second
section we derive the scaling exponent from general properties of constant source
systems. We then introduce a variational principal that corresponds to asking that
the mass of the organism be the minimal mass possible and derive the flow that
results from this principle. We further give a few examples. We close with some
general remarks.
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2. Constant source systems

In both animals and plants nutrients have to be supplied to the whole organism
from a central source. In the case of animals this source is the heart; for plants it
is the stem that connects the plant to its roots. It is also true that the amount of
nutrients that are required per volume is roughly constant throughout the organism.
As in [3] we conceptualize these two properties, the central source and the constant
distribution of sinks, in the following definition:

Definition 1. A constant source system is a triple (V , �j, c), where V is a regular
domain1 in RD which contains the origin, �j is a vector field defined in a neighbor-
hood of V with the possible exception of the origin, and c ∈ R is a constant such
that

∇ · �j = Acδ0 + c (2)
�j⊥|∂V = 0, (3)

where Ac ∈ R is a constant, δ0 is the Dirac delta distribution2 at the origin, and
�j⊥ is the component of �j that is perpendicular to the tangent space of ∂V .

The reason why we index the constant Ac with c is that it is determined by c,
as the following lemma shows:

Lemma 1. Let (V , �j) be a constant source system. Then

Ac = −c Vol(V ). (4)

Proof. From Gauss’s theorem we infer∫
V

∇ · �j dv =
∫
∂V

�j dσ = 0, (5)

since �j is perpendicular to the normal of the boundary ∂V . On the other hand it
follows from equation (2) that this integral equals Ac + c Vol(V ). Our result thus
follows. 
�

The definition deserves some discussion. Equation (2) describes the sources of
the flow �j . As we have discussed above it consists of two terms; the central source
represented by the delta distribution and a constant distribution of sinks represented
by the constant c. Equation (3) expresses the fact that no blood or sap leaves the
organism. The flow �j is thus required to be parallel to the boundary ∂V of V .

Before turning to the allometric scaling law we give a simple example of a
central source system.

1 V is thus a manifold with boundary contained in RD . For more details see [11, p. 145]
2 For more information about distributions see [10].
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Example 1. Let V be the ball BR of radius R around the origin in RD . If we restrict
ourselves to spherically symmetrical solutions we can easily find the flow �j . It
follows from spherical symmetry that the flow �j has to be radial. Using Gauss’s
theorem as in the previous lemma we can calculate the magnitude j (r) of the flow
�j(�r) for r < R.

We get
σD rD−1 j (r) = c ωD (RD − rD), (6)

where σD and ωD are the surface area and volume of the D - dimensional unit ball
respectively. The flow is then

�j(�r) = c

D

(
1 − RD

rD

)
�r. (7)

Here we have used the fact that the quotient of ωD and σD is equal to the inverse
of D. It is easily checked that (BR, �j, c) is a constant source system in RD .

3. Allometric scaling

In this section we want to derive the allometric scaling law along the lines of [3].
To this end we have to identify the quantities that correspond to the metabolism B

and the mass M of the organism in our model.
The metabolism B of the organism is proportional to the amount of nutrients

delivered to the system. Since we assume that we have a constant distribution of
sinks described by the constant c in equation (2) this amount is proportional to the
volume of V . The metabolism is then proportional to

B̃ = Vol(V). (8)

To find the quantity corresponding to the mass of the animal we have to use a
relation between the mass of the animal and the mass of the blood or sap contained
in the animal. It has been found [9] that these quantities are proportional to each
other. It thus suffices to calculate the mass of the blood or sap contained in the
organism. Given the flow �j this can be done using the equation

�j = ρ �v, (9)

which relates the flow to the density ρ of the flowing medium and its velocity �v. We
now make a simplifying assumption. We assume that the velocity of the flowing
medium is roughly constant throughout the organism. This assumption is however
not necessary for the derivation of the scaling law. The constant velocity can be
thought of as the average velocity of the medium. Under this assumption the mass
of the blood or sap is then obtained by integrating the magnitude of �j over the
volume V . The mass of the animal is then proportional to the quantity

M̃ =
∫
V

| �j | dv. (10)

Now that we have identified the quantities M̃ and B̃ we want to investigate how
they change if we scale the region V by some positive parameter s > 0, i.e. replace
V by s · V . The crucial observation here is made in the following proposition (see
figure 2):
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Fig. 2. The arrows in this figure represent the flow of the medium transporting the nutrients
inside the lizards. The key observation that leads to the allometric scaling law is that if �j(�r)
is a flow in the unscaled region V then s �j(�r/s) is a flow for the scaled region sV . This is
represented in the figure by arrows of increased length in the bigger of the two lizards.

Proposition 1. Let V be a regular domain in RD . Then (V , �j(�r), c) is a constant
source system if and only if (sV , s �j(�r/s), c) is a constant source system, for all
s > 0.

Proof. The gradient of s �j(�r/s) is given by

∇ · s �j(�r/s) = (∇ · j)(�r/s). (11)

The scaled flow thus gives rise to a constant source system if and only if the unscaled
flow does. 
�

This proposition has the allometric scaling law as a corollary:

Corollary 1. Let (V , �j, c)be a constant source system. Let M̃1 and B̃1 be the quanti-
ties introduced in equations (8) and (10) respectively. The corresponding quantities
M̃s and B̃s calculated for the scaled constant source system (sV , s �j(�r/s), c) given
by proposition 1 then satisfy

M̃s = sD+1 M̃1 (12)

B̃s = sD B̃1 (13)

Furthermore M̃s and B̃s are related through the allometric relation

B̃s = B̃0 M̃
D

D+1
s , (14)

for a constant B̃0 and all s > 0.

Proof. Since the volume scales like sD we immediatly find equation (13). Equa-
tion (12) follows from the scaling behaviour of the flow �j which was derived in
proposition 1. A simple transformation of the integration variable gives

M̃s =
∫
sV

|s �j(�r/s)|dv = sD+1
∫
V

| �j(�r)|dv = sD+1 M̃1. (15)
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Eliminating the scaling parameter s in equations (12) and (13) we find equation
(14) where the constant B̃0 is given by B̃1/M̃

D/D+1
1 . 
�

With our identification of M̃ and B̃ with the mass M and the metabolism B

of the organism respectively we recover the allometric scaling relation (1) from
equation (14).

A few remarks are in order. To identify our quantity M̃ with the mass M of the
organism we had to assume that the velocity of the blood or sap is roughly constant
throughout the organism. To develop the allometric scaling law we have to go a
little further. We have to assume that the velocity does change much for different
species. This assumption has been checked for mammals [4] and is reasonable for
plants to assume because the principle behind the transport here is osmosis. The rate
of osmosis depends only on the properties of the membrane and the concentration
of the solutions and is thus independent of the size and form of the plant. Since
Kleiber’s law (1) is valid over several orders of magnitude it can not happen that
the velocity scales like any appreciable power of the scaling parameter because the
speeds involved would become too large.

Another question that we have to address is why nature should choose the scaled
flow given in proposition 1 for the scaled region. In the next section we will show
that two constant source systems with regionsV and sV are both minimal in a sense
defined in the next section if and only if they are related in the way described in
proposition 1. If nature thus adheres to this optimization principle the scaled flow
is chosen and we obtain the allometric scaling behaviour as in equation (1).

4. A variational principle

In this section we investigate the kind of flow that originates from the requirement
that the mass of the transportation system is as small as it can be while still providing
the organism with nutrients. We formalize this in the following definition.

Definition 2. Let (V , �j, c) be a constant source system in RD . (V , �j, c) is called
minimal if and only if there is no other constant source system (V , �j ′, c) such that∫

V

| �j ′| dv <

∫
V

| �j | dv. (16)

We now want to find the flow �j of a minimal constant source system. To do this
we apply variational methods to the integral occurring in equation (16). Since we
are dealing with a constant source system we have to ensure that the flow satisfies
∇ · �j = c inside of V . This can be achieved by introducing a Lagrange multiplier
λ. The variational principle that we get is thus

δ

∫
V−B0(r)

| �j | + λ(∇ · �j − c) dv = 0. (17)

Because of the singular behaviour of the sources of �j at the origin we exclude a
ball B0(r) of small but arbitrary radius r > 0 around the origin from the region of
integration.
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The equations arising from this variational principle are given in the next
proposition:

Proposition 2. The Euler – Lagrange equations arising from the variational
principle (17) are

∇ · �j = c (18)

∇λ =
�j

| �j | . (19)

Proof. Carriying out the variation (17) gives∫
V−B0(r)

( �j · δ �j
| �j | + λ∇ · δ �j + (∇ · �j − c)δλ

)
dv = 0 (20)

Since the variation δλ of λ is arbitrary we immediately find equation (18).
Integrating by parts the second term in equation (20) gives the following result
for the remaining terms∫

V−B0(r)

( �j
| �j | − ∇λ

)
· δ �j dv = 0. (21)

Because δ �j is arbitrary we obtain equation (19). 
�
Example 2. The constant source system given in example 1 is minimal. Since the
flow is radial it is easy to see that the Langrange multiplier λ in this example is
nothing but the radial coordinate r .

In the next section we look for solutions to equations (18) and (19).
Before concluding this section we investigate how minimal constant source

systems behave under scaling. As we have alluded to in the last section scaling
preserves minimality:

Lemma 2. Let (V , �j(�r), c) be a constant source system. It is minimal if and only
if (sV , s �j(�r/s), c) is minimal for all s > 0.

Proof. Assume that (V , �j, c) is a minimal constant source system and assume
furthermore that (s0V, s0 �j(�r/s0), c) is not minimal for some s0 > 0. Then there
exists a flow �j ′ such that (s0V, �j ′, c) is a constant source system and∫

s0V

| �j ′(�r)| d�r <
∫
s0V

|s0 �j(�r/s0)| d�r. (22)

If we perform a change of variables as in the proof of corollary 1 to proposition 1
we find ∫

V

| �j ′(s0�r)/s0| d�r <
∫
V

| �j(�r)| d�r. (23)

This is a contradiction to our assumption that (V , �j, c) is a minimal constant source
system. The other implication is proved similarly. 
�
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5. Minimal flows

In this section we want find constant source systems that satisfy equation (19).
Taking the square of equation (19) we find

∇λ · ∇λ = 1. (24)

This equation has the form of a Hamilton - Jacobi equation for a particle moving in
D dimensions. Such equations can be solved using the method of characteristics.

If λ is a solution to equation (24) the characteristics are a congruence of curves
with the property that the tangent vector at any point of one of the curves equals
the gradient of λ at that point. If the congruence is given by σ(t; s), where the
parameter s labels the different curves in the congruence and t is the parameter
along the curves, this condition translates to

d

dt
σ (t; s) = ∇λ(σ(t; s)), (25)

for all s and t .
We now want to find the characteristics in our problem.

Lemma 3. The characteristics for equation (24) are straight lines.

Proof. Writing equation (24) in coordinates and differentiating with respect to xj
gives ∑

i

∂

∂xi
λ

∂

∂xj

∂

∂xi
λ = 0. (26)

The j th-component of the second t-derivative of σ(t; s) on the other hand is given
by

d2

dt2
σj (t; s) =

∑
i

∂

∂xi

∂

∂xj
λ(σ (t; s)) d

dt
σi(t; s) (27)

=
∑
i

∂

∂xi

∂

∂xj
λ(σ (t; s)) ∂

∂xi
λ(σ (t; s)), (28)

where we have used equation (25) twice. Comparing equations (27) and (26) gives

d2

dt2
σ(t; s) = 0, (29)

from which we infer that the characteristics are straight lines. 
�

Example 3. In example 1 the characteristics are of the form t �̂r , where �̂r is a unit
vector in RD .
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We now want to show that this example reflects the general situation. As in the
case of the ball the characteristics are lines. For a certain class of regions they are
even radial as in the case of the ball. To show this we introduce some technical
notations.

Let p ∈ V a point such that �j(p) �= 0. Let λ0 be the value of the function λ

at p. Then there exists a neighborhood U of 0 ∈ RD−1 and a diffeomorphism f

which maps U into V such that

λ(f (x)) = λ0, (30)

for all x ∈ U . The diffeomorphism f gives thus coordinates on the surface defined
by λ(q) = λ0. Since �j(p) �= 0 we can assume that �j does not vanish for all p ∈ U ′.

Using the diffeomorphism f we can now define a coordinate system ρ for a
whole neighborhood of p. We set

ρ : U × R −→ RD (31)

(x, t) −→ t∇λ(f (x)) + f (x)

From lemma 3 we know that the flow �j will be along the the lines on which the
coordinate x is constant. The flow can thus be written in the form

�j = χ�̂t, (32)

for some real function χ . Here �̂t denotes the coordinate field corresponding the
coordinate t . We now want to find the differential equation that governs χ . Since �j
is a constant source system we find

c = ∇ �j (33)

= ∇χ�̂t (34)

= �̂t · ∇χ + χ∇�̂t . (35)

Now �̂t is the normal unit vector to the surface given by λ = λ0+t and its divergence
is related to the mean curvature H of that surface3. One finds

H = − 1

D − 1
∇�̂t . (36)

We summarize our results in the following proposition:

Proposition 3. Letp ∈ V be such that �j(p) �= 0 and let ρ be the coordinate system
introduced in equation (31). The flow �j can then be written in the form

�j = χ�̂t (37)

where χ is a real valued function satisfying the differential equation

�̂t · ∇χ − (D − 1)χH = c. (38)

Here H is the mean curvature of the surface normal to the vector field �̂t .
3 See [2] for definitions and more details.
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This proposition has a couple of important corollaries that will allow us to
calculate the flow for more general examples.

Corollary 2. Let V be a compact region in RD . Then no characteristic that does
not go through the origin intersects the boundary ∂V transversely4 in two different
points.

Proof. Lets assume that σ(t) is a characteristic that does not go through the origin
and intersects the boundary ∂V in two points. We know from equation (3) that the
flow �j vanishes at these points. We will show that this is in contradiction to the
behaviour of the function χ along the characteristic.

Let χ̃(t) and H̃ (t) be the functions χ and H evaluated on the characteristic
which we parameterize by t . We assume that t = 0 for one of the intersection
points. From equation (38) we see that

dχ̃

dt
(t) − (D − 1)χ̃(t)H̃ (t) = c. (39)

If we set

h(t) =
∫ t

0
H̃ (s) ds (40)

we can write the solution to (39) as follows

χ̃(t) = c exp ((D − 1)h(t))
∫ t

0
exp (−(D − 1)h(s)) ds. (41)

It is clear that for any finite t > 0 this expression is not equal to zero. Since V

is assumed to be compact it follows that the t parameter will be finite when the
characteristic intersects with the boundary of V again. Since the value of χ̃ is not
zero we obtain a contradiction to equation (3). No such characteristic can thus exist.


�
For spheres or ellipsoids all straight lines going through them intersect the

boundary transversely in two points. For such regions we can calculate the flow �j
immediately.

Corollary 3. Let V be a compact region inRD with the property that every straight
line that passes through the interior of V intersects the boundary ∂V transversely
in two points. Then all characteristics are straight lines emanating from the origin.
They are thus of the form t �̂r , where �̂r is a unit vector.

Proof. This follows directly from the previous corollary 2. Since all the straight
lines intersect the boundary transversely they have to go through the origin. They
are thus of the form t �̂r . 
�

The last corollary allows us to calculate the flow �j for the class of regions
introduced there.

4 This means that the velocity vector of the characteristic at the boundary is not included
in the tangent space of ∂V at that point.
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Lemma 4. Let V be as in the previous corollary and set d�̂r to be the distance from

the origin to the boundary ∂V in the direction of �̂r . Then the flow �j can be written
as

�j(�r) = χ�̂r (r)
�̂r, (42)

where the function χ�̂r is given by

χ�̂r (r) = c

D

(
1 −

dD�̂r
rD

)
r. (43)

The quantity M̃ defined in equation (10) is then given by the following integral over
the unit sphere

M̃ = |c|
D + 1

∫
d% dD+1

�̂r . (44)

Proof. It follows form the last corollary that the characteristics are of the form r �̂r .
The flow �j can thus be written in the form of equation (42). Calculating the diver-
gence of this equation or using equation (38) and realizing that the mean curvature
is given by the inverse of the radial coordinate r we obtain

dχ�̂r
dr

+ D − 1

r
χ�̂r = c. (45)

This equation can be solved immediately. The solution is given by equation (43).
Finally carrying out the radial integration in equation (10) leads to the expression
given for M̃ in equation (44). 
�

Example 4. For a ball of radius R we have d�̂r = R, for all unit vectors �̂r . If we use

this d�̂r in equation (43) to calculate �j we recover equation (7).

Example 5. We next look at a two dimensional ellipse. If a and b are the main axis
of the ellipse the distance d�̂r is given by

d�̂r = ab√
b2 cos2 φ + a2 sin2 φ

, (46)

where φ is the angle that �̂r makes with the axis of length a. Together with formu-
la (42) and (45) this gives the flow �j for the ellipse. Using equation (44) we can
calculate M̃ . We obtain

M̃ = A2

π2
E

(
e2

e2 − 1

)
. (47)

In the last formula we have expressed M̃ in terms of the area A and eccentricity e

of the ellipse5. The function E is the complete elliptic integral6.

5 In terms of the parameters a and b one has A = πab and e2 = (a2 − b2)/a2.
6 See [6] for more information on elliptic integrals.
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Fig. 3. This graph depicts the dependence of the mass M on the eccentricity e of the ellipse
or ellipsoid for a fixed metabolism. The mass has been set to one for zero eccentricity.

With this result we can investigate how for a given metabolism the mass de-
pends on the shape of the organism. Figure 3 shows how the mass varies with the
eccentricity of the ellipse. Only for very elongated shapes for which the eccentricity
is close to one does one find an appreciable increase in the mass. For these shapes
more and more energy is needed to sustain the transportation network.

Example 6. As a final example we want to discuss the three dimensional ellipsoid.
If the axis of the ellipsoid are a, b, and c the distance d�̂r is given by

d�̂r =
(

sin2 θ

(
cos2 φ

a2
+ sin2 φ

b2

)
+ cos2 θ

1

c2

)−1/2

. (48)

The angles φ and θ are the usual polar coordinates in the coordinate system spanned
by the principal axis of the ellipsoid such that x (y, z) - axis coincides with the axis
of the ellipsoid having the length a (b, c respectively).

Also in this example we want to find the quantity M̃ corresponding to the mass
of the organism. We restrict ourselves here to the case where a = b < c. In this
case the shape is that of a rotational ellipsoid and can as in the two dimensional
case be described by its eccentricity e. We obtain

M̃ = π
|c|
2

(
9

16π2

)2/3

V 4/3(1 − e2)−1/3
(

1 + 1

e
Arctanh(e) − e Arctanh(e)

)
.

(49)
As in the previous example we have expressed the result in terms of the eccentricity
e and the volume V 7.

7 For an ellipsoid the volume V is given by 4
3πabc.
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We can again ask the question of how for a given metabolism the mass changes
with the shape. The answer is given in figure 3. As in the case of the two dimen-
sional ellipse the graph shows appreciable dependence on the shape only for values
of the eccentricity that are close to one.

6. Conclusion

As it was shown in [3] the characteristics of a constant source system lead to an
explanation of the allometric scaling relation found in animals and plants. The
general nature of the argument explains why the scaling law holds for such a large
variety of organisms of such different sizes and forms. No special knowledge of the
transportation networks inside the organism are required to derive the scaling law.
What is important are not the specifics of the networks but the task it has to perform.
Namely to evenly supply the body with whatever it needs from a central source.
This is what characterizes a constant source system and this is what is responsible
for the characteristic scaling exponent.

We have derived the scaling law here for a general space dimension. To explain
Kleiber’s law a discussion of three dimensional space would have been sufficient.
We gave the general derivation because other cases do exist in nature. An exam-
ple for a two dimensional constant source system is the drainage basin of a river
(for details see [1]). Another example for two dimensional constant source systems
might be the leaves of plants. Since sun rays only penetrate a few layers of a leaf the
task of catching sun rays is essentially a two-dimensional one. We thus conjecture
that the surface area of leaves and their mass follow an allometric scaling relation
as in equation (1) with a two-thirds scaling exponent. It would be interesting to see
whether this prediction is true.
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